3.3.56 \(\int \frac {(a+b \text {arcsinh}(c x))^2}{(\pi +c^2 \pi x^2)^{3/2}} \, dx\) [256]

3.3.56.1 Optimal result
3.3.56.2 Mathematica [A] (verified)
3.3.56.3 Rubi [C] (verified)
3.3.56.4 Maple [B] (verified)
3.3.56.5 Fricas [F]
3.3.56.6 Sympy [F]
3.3.56.7 Maxima [F]
3.3.56.8 Giac [F]
3.3.56.9 Mupad [F(-1)]

3.3.56.1 Optimal result

Integrand size = 25, antiderivative size = 104 \[ \int \frac {(a+b \text {arcsinh}(c x))^2}{\left (\pi +c^2 \pi x^2\right )^{3/2}} \, dx=\frac {(a+b \text {arcsinh}(c x))^2}{c \pi ^{3/2}}+\frac {x (a+b \text {arcsinh}(c x))^2}{\pi \sqrt {\pi +c^2 \pi x^2}}-\frac {2 b (a+b \text {arcsinh}(c x)) \log \left (1+e^{2 \text {arcsinh}(c x)}\right )}{c \pi ^{3/2}}-\frac {b^2 \operatorname {PolyLog}\left (2,-e^{2 \text {arcsinh}(c x)}\right )}{c \pi ^{3/2}} \]

output
(a+b*arcsinh(c*x))^2/c/Pi^(3/2)-2*b*(a+b*arcsinh(c*x))*ln(1+(c*x+(c^2*x^2+ 
1)^(1/2))^2)/c/Pi^(3/2)-b^2*polylog(2,-(c*x+(c^2*x^2+1)^(1/2))^2)/c/Pi^(3/ 
2)+x*(a+b*arcsinh(c*x))^2/Pi/(Pi*c^2*x^2+Pi)^(1/2)
 
3.3.56.2 Mathematica [A] (verified)

Time = 0.60 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.47 \[ \int \frac {(a+b \text {arcsinh}(c x))^2}{\left (\pi +c^2 \pi x^2\right )^{3/2}} \, dx=\frac {-b^2 \left (-c x+\sqrt {1+c^2 x^2}\right ) \text {arcsinh}(c x)^2+2 b \text {arcsinh}(c x) \left (a c x-b \sqrt {1+c^2 x^2} \log \left (1+e^{-2 \text {arcsinh}(c x)}\right )\right )+a \left (a c x-b \sqrt {1+c^2 x^2} \log \left (1+c^2 x^2\right )\right )+b^2 \sqrt {1+c^2 x^2} \operatorname {PolyLog}\left (2,-e^{-2 \text {arcsinh}(c x)}\right )}{c \pi ^{3/2} \sqrt {1+c^2 x^2}} \]

input
Integrate[(a + b*ArcSinh[c*x])^2/(Pi + c^2*Pi*x^2)^(3/2),x]
 
output
(-(b^2*(-(c*x) + Sqrt[1 + c^2*x^2])*ArcSinh[c*x]^2) + 2*b*ArcSinh[c*x]*(a* 
c*x - b*Sqrt[1 + c^2*x^2]*Log[1 + E^(-2*ArcSinh[c*x])]) + a*(a*c*x - b*Sqr 
t[1 + c^2*x^2]*Log[1 + c^2*x^2]) + b^2*Sqrt[1 + c^2*x^2]*PolyLog[2, -E^(-2 
*ArcSinh[c*x])])/(c*Pi^(3/2)*Sqrt[1 + c^2*x^2])
 
3.3.56.3 Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 0.57 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.04, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {6202, 6212, 3042, 26, 4201, 2620, 2715, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \text {arcsinh}(c x))^2}{\left (\pi c^2 x^2+\pi \right )^{3/2}} \, dx\)

\(\Big \downarrow \) 6202

\(\displaystyle \frac {x (a+b \text {arcsinh}(c x))^2}{\pi \sqrt {\pi c^2 x^2+\pi }}-\frac {2 b c \int \frac {x (a+b \text {arcsinh}(c x))}{c^2 x^2+1}dx}{\pi ^{3/2}}\)

\(\Big \downarrow \) 6212

\(\displaystyle \frac {x (a+b \text {arcsinh}(c x))^2}{\pi \sqrt {\pi c^2 x^2+\pi }}-\frac {2 b \int \frac {c x (a+b \text {arcsinh}(c x))}{\sqrt {c^2 x^2+1}}d\text {arcsinh}(c x)}{\pi ^{3/2} c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {x (a+b \text {arcsinh}(c x))^2}{\pi \sqrt {\pi c^2 x^2+\pi }}-\frac {2 b \int -i (a+b \text {arcsinh}(c x)) \tan (i \text {arcsinh}(c x))d\text {arcsinh}(c x)}{\pi ^{3/2} c}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {x (a+b \text {arcsinh}(c x))^2}{\pi \sqrt {\pi c^2 x^2+\pi }}+\frac {2 i b \int (a+b \text {arcsinh}(c x)) \tan (i \text {arcsinh}(c x))d\text {arcsinh}(c x)}{\pi ^{3/2} c}\)

\(\Big \downarrow \) 4201

\(\displaystyle \frac {x (a+b \text {arcsinh}(c x))^2}{\pi \sqrt {\pi c^2 x^2+\pi }}+\frac {2 i b \left (2 i \int \frac {e^{2 \text {arcsinh}(c x)} (a+b \text {arcsinh}(c x))}{1+e^{2 \text {arcsinh}(c x)}}d\text {arcsinh}(c x)-\frac {i (a+b \text {arcsinh}(c x))^2}{2 b}\right )}{\pi ^{3/2} c}\)

\(\Big \downarrow \) 2620

\(\displaystyle \frac {x (a+b \text {arcsinh}(c x))^2}{\pi \sqrt {\pi c^2 x^2+\pi }}+\frac {2 i b \left (2 i \left (\frac {1}{2} \log \left (e^{2 \text {arcsinh}(c x)}+1\right ) (a+b \text {arcsinh}(c x))-\frac {1}{2} b \int \log \left (1+e^{2 \text {arcsinh}(c x)}\right )d\text {arcsinh}(c x)\right )-\frac {i (a+b \text {arcsinh}(c x))^2}{2 b}\right )}{\pi ^{3/2} c}\)

\(\Big \downarrow \) 2715

\(\displaystyle \frac {x (a+b \text {arcsinh}(c x))^2}{\pi \sqrt {\pi c^2 x^2+\pi }}+\frac {2 i b \left (2 i \left (\frac {1}{2} \log \left (e^{2 \text {arcsinh}(c x)}+1\right ) (a+b \text {arcsinh}(c x))-\frac {1}{4} b \int e^{-2 \text {arcsinh}(c x)} \log \left (1+e^{2 \text {arcsinh}(c x)}\right )de^{2 \text {arcsinh}(c x)}\right )-\frac {i (a+b \text {arcsinh}(c x))^2}{2 b}\right )}{\pi ^{3/2} c}\)

\(\Big \downarrow \) 2838

\(\displaystyle \frac {x (a+b \text {arcsinh}(c x))^2}{\pi \sqrt {\pi c^2 x^2+\pi }}+\frac {2 i b \left (2 i \left (\frac {1}{2} \log \left (e^{2 \text {arcsinh}(c x)}+1\right ) (a+b \text {arcsinh}(c x))+\frac {1}{4} b \operatorname {PolyLog}\left (2,-e^{2 \text {arcsinh}(c x)}\right )\right )-\frac {i (a+b \text {arcsinh}(c x))^2}{2 b}\right )}{\pi ^{3/2} c}\)

input
Int[(a + b*ArcSinh[c*x])^2/(Pi + c^2*Pi*x^2)^(3/2),x]
 
output
(x*(a + b*ArcSinh[c*x])^2)/(Pi*Sqrt[Pi + c^2*Pi*x^2]) + ((2*I)*b*(((-1/2*I 
)*(a + b*ArcSinh[c*x])^2)/b + (2*I)*(((a + b*ArcSinh[c*x])*Log[1 + E^(2*Ar 
cSinh[c*x])])/2 + (b*PolyLog[2, -E^(2*ArcSinh[c*x])])/4)))/(c*Pi^(3/2))
 

3.3.56.3.1 Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 2620
Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/ 
((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp 
[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x] - Si 
mp[d*(m/(b*f*g*n*Log[F]))   Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x 
)))^n/a)], x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4201
Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + (Complex[0, fz_])*(f_.)*(x_)], x 
_Symbol] :> Simp[(-I)*((c + d*x)^(m + 1)/(d*(m + 1))), x] + Simp[2*I   Int[ 
(c + d*x)^m*(E^(2*((-I)*e + f*fz*x))/(1 + E^(2*((-I)*e + f*fz*x)))), x], x] 
 /; FreeQ[{c, d, e, f, fz}, x] && IGtQ[m, 0]
 

rule 6202
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2)^(3/2), 
x_Symbol] :> Simp[x*((a + b*ArcSinh[c*x])^n/(d*Sqrt[d + e*x^2])), x] - Simp 
[b*c*(n/d)*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]   Int[x*((a + b*ArcSinh[ 
c*x])^(n - 1)/(1 + c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, 
 c^2*d] && GtQ[n, 0]
 

rule 6212
Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_))/((d_) + (e_.)*(x_)^2), 
 x_Symbol] :> Simp[1/e   Subst[Int[(a + b*x)^n*Tanh[x], x], x, ArcSinh[c*x] 
], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[n, 0]
 
3.3.56.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(242\) vs. \(2(114)=228\).

Time = 0.26 (sec) , antiderivative size = 243, normalized size of antiderivative = 2.34

method result size
default \(\frac {a^{2} x}{\pi \sqrt {\pi \,c^{2} x^{2}+\pi }}+b^{2} \left (-\frac {\left (c^{2} x^{2}-c x \sqrt {c^{2} x^{2}+1}+1\right ) \operatorname {arcsinh}\left (c x \right )^{2}}{\pi ^{\frac {3}{2}} c \left (c^{2} x^{2}+1\right )}+\frac {2 \operatorname {arcsinh}\left (c x \right )^{2}}{c \,\pi ^{\frac {3}{2}}}-\frac {2 \,\operatorname {arcsinh}\left (c x \right ) \ln \left (1+\left (c x +\sqrt {c^{2} x^{2}+1}\right )^{2}\right )}{c \,\pi ^{\frac {3}{2}}}-\frac {\operatorname {polylog}\left (2, -\left (c x +\sqrt {c^{2} x^{2}+1}\right )^{2}\right )}{c \,\pi ^{\frac {3}{2}}}\right )+2 a b \left (\frac {2 \,\operatorname {arcsinh}\left (c x \right )}{c \,\pi ^{\frac {3}{2}}}-\frac {\left (c^{2} x^{2}-c x \sqrt {c^{2} x^{2}+1}+1\right ) \operatorname {arcsinh}\left (c x \right )}{\pi ^{\frac {3}{2}} c \left (c^{2} x^{2}+1\right )}-\frac {\ln \left (1+\left (c x +\sqrt {c^{2} x^{2}+1}\right )^{2}\right )}{c \,\pi ^{\frac {3}{2}}}\right )\) \(243\)
parts \(\frac {a^{2} x}{\pi \sqrt {\pi \,c^{2} x^{2}+\pi }}+b^{2} \left (-\frac {\left (c^{2} x^{2}-c x \sqrt {c^{2} x^{2}+1}+1\right ) \operatorname {arcsinh}\left (c x \right )^{2}}{\pi ^{\frac {3}{2}} c \left (c^{2} x^{2}+1\right )}+\frac {2 \operatorname {arcsinh}\left (c x \right )^{2}}{c \,\pi ^{\frac {3}{2}}}-\frac {2 \,\operatorname {arcsinh}\left (c x \right ) \ln \left (1+\left (c x +\sqrt {c^{2} x^{2}+1}\right )^{2}\right )}{c \,\pi ^{\frac {3}{2}}}-\frac {\operatorname {polylog}\left (2, -\left (c x +\sqrt {c^{2} x^{2}+1}\right )^{2}\right )}{c \,\pi ^{\frac {3}{2}}}\right )+2 a b \left (\frac {2 \,\operatorname {arcsinh}\left (c x \right )}{c \,\pi ^{\frac {3}{2}}}-\frac {\left (c^{2} x^{2}-c x \sqrt {c^{2} x^{2}+1}+1\right ) \operatorname {arcsinh}\left (c x \right )}{\pi ^{\frac {3}{2}} c \left (c^{2} x^{2}+1\right )}-\frac {\ln \left (1+\left (c x +\sqrt {c^{2} x^{2}+1}\right )^{2}\right )}{c \,\pi ^{\frac {3}{2}}}\right )\) \(243\)

input
int((a+b*arcsinh(c*x))^2/(Pi*c^2*x^2+Pi)^(3/2),x,method=_RETURNVERBOSE)
 
output
a^2/Pi*x/(Pi*c^2*x^2+Pi)^(1/2)+b^2*(-1/Pi^(3/2)*(c^2*x^2-c*x*(c^2*x^2+1)^( 
1/2)+1)*arcsinh(c*x)^2/c/(c^2*x^2+1)+2/c/Pi^(3/2)*arcsinh(c*x)^2-2/c/Pi^(3 
/2)*arcsinh(c*x)*ln(1+(c*x+(c^2*x^2+1)^(1/2))^2)-1/c/Pi^(3/2)*polylog(2,-( 
c*x+(c^2*x^2+1)^(1/2))^2))+2*a*b*(2/c/Pi^(3/2)*arcsinh(c*x)-1/Pi^(3/2)*(c^ 
2*x^2-c*x*(c^2*x^2+1)^(1/2)+1)*arcsinh(c*x)/c/(c^2*x^2+1)-1/c/Pi^(3/2)*ln( 
1+(c*x+(c^2*x^2+1)^(1/2))^2))
 
3.3.56.5 Fricas [F]

\[ \int \frac {(a+b \text {arcsinh}(c x))^2}{\left (\pi +c^2 \pi x^2\right )^{3/2}} \, dx=\int { \frac {{\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}^{2}}{{\left (\pi + \pi c^{2} x^{2}\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((a+b*arcsinh(c*x))^2/(pi*c^2*x^2+pi)^(3/2),x, algorithm="fricas" 
)
 
output
integral(sqrt(pi + pi*c^2*x^2)*(b^2*arcsinh(c*x)^2 + 2*a*b*arcsinh(c*x) + 
a^2)/(pi^2*c^4*x^4 + 2*pi^2*c^2*x^2 + pi^2), x)
 
3.3.56.6 Sympy [F]

\[ \int \frac {(a+b \text {arcsinh}(c x))^2}{\left (\pi +c^2 \pi x^2\right )^{3/2}} \, dx=\frac {\int \frac {a^{2}}{c^{2} x^{2} \sqrt {c^{2} x^{2} + 1} + \sqrt {c^{2} x^{2} + 1}}\, dx + \int \frac {b^{2} \operatorname {asinh}^{2}{\left (c x \right )}}{c^{2} x^{2} \sqrt {c^{2} x^{2} + 1} + \sqrt {c^{2} x^{2} + 1}}\, dx + \int \frac {2 a b \operatorname {asinh}{\left (c x \right )}}{c^{2} x^{2} \sqrt {c^{2} x^{2} + 1} + \sqrt {c^{2} x^{2} + 1}}\, dx}{\pi ^{\frac {3}{2}}} \]

input
integrate((a+b*asinh(c*x))**2/(pi*c**2*x**2+pi)**(3/2),x)
 
output
(Integral(a**2/(c**2*x**2*sqrt(c**2*x**2 + 1) + sqrt(c**2*x**2 + 1)), x) + 
 Integral(b**2*asinh(c*x)**2/(c**2*x**2*sqrt(c**2*x**2 + 1) + sqrt(c**2*x* 
*2 + 1)), x) + Integral(2*a*b*asinh(c*x)/(c**2*x**2*sqrt(c**2*x**2 + 1) + 
sqrt(c**2*x**2 + 1)), x))/pi**(3/2)
 
3.3.56.7 Maxima [F]

\[ \int \frac {(a+b \text {arcsinh}(c x))^2}{\left (\pi +c^2 \pi x^2\right )^{3/2}} \, dx=\int { \frac {{\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}^{2}}{{\left (\pi + \pi c^{2} x^{2}\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((a+b*arcsinh(c*x))^2/(pi*c^2*x^2+pi)^(3/2),x, algorithm="maxima" 
)
 
output
b^2*integrate(log(c*x + sqrt(c^2*x^2 + 1))^2/(pi + pi*c^2*x^2)^(3/2), x) + 
 2*a*b*x*arcsinh(c*x)/(pi*sqrt(pi + pi*c^2*x^2)) + a^2*x/(pi*sqrt(pi + pi* 
c^2*x^2)) - a*b*log(x^2 + 1/c^2)/(pi^(3/2)*c)
 
3.3.56.8 Giac [F]

\[ \int \frac {(a+b \text {arcsinh}(c x))^2}{\left (\pi +c^2 \pi x^2\right )^{3/2}} \, dx=\int { \frac {{\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}^{2}}{{\left (\pi + \pi c^{2} x^{2}\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((a+b*arcsinh(c*x))^2/(pi*c^2*x^2+pi)^(3/2),x, algorithm="giac")
 
output
integrate((b*arcsinh(c*x) + a)^2/(pi + pi*c^2*x^2)^(3/2), x)
 
3.3.56.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \text {arcsinh}(c x))^2}{\left (\pi +c^2 \pi x^2\right )^{3/2}} \, dx=\int \frac {{\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )}^2}{{\left (\Pi \,c^2\,x^2+\Pi \right )}^{3/2}} \,d x \]

input
int((a + b*asinh(c*x))^2/(Pi + Pi*c^2*x^2)^(3/2),x)
 
output
int((a + b*asinh(c*x))^2/(Pi + Pi*c^2*x^2)^(3/2), x)